Chapter 1: Data Warehouse (DWH) Fundamentals with Introduction to Data Mining

1-1 to 1-44

Syllabus: DWH characteristics, Dimensional modeling: Star, Snowflakes, OLAP operation, OLTP vs OLAP Data Mining as a step in KDD, Kind of patterns to be mined, Technologies used, Data Mining applications.

Self-learning Topics : Data Marts, Major issues in Data Mining.

1.1	DWH Cha	aracteristics	1-1
	1.1.1	Definition Data Warehouse	1-1
	1.1.2	Benefits of Data Warehousing	1-1
	1.1.3	Features of a Data Warehouse	1-2
1.2	Dimensio	onal modelling : Star, Snowflakes	1-3
	1.2.1	What is Dimensional Modelling?	1-3
	1.2.2	Difference between Data Warehouse Modeling and Operational Database Modeling	1-3
	1.2.3	Comparison between Dimensional Model and ER model	1-3
	1.2.4	Information Package Diagram	1-4
	1.2.5	Star Schema	1-5
	1.2.6	STAR schema Keys	1-6
	1.2.7	The Snowflake Schema	1-7
	1.2.8	Star Flake Schema	1-7
	1.2.9	Differentiate between Star Schema and Snowflake Schema	1-8
	1.2.10	Fact Tables and Dimension Tables	1-8
	1.2.11	Factless Fact Table	1-9
	1.2.12	Fact Constellation Schema or Families of Star	1-10
	1.2.13	Examples on Star Schema and Snowflake Schema	1-12
1.3	OLAP ope	eration	1-26
	1.3.1	OLAP operations or OLAP Techniques	1-26
	1.3.1(A)	Consolidation or Roll Up	1-27
	1.3.1(B)	Drill-down	1-28
	1.3.1(C)	Slicing and dicing	1-29
	1.3.1(D)	Dice	1-29
	1.3.1(E)	Pivot / Rotate	1-30
	1.3.1(F)	Other OLAP operations	1-30
	1.3.2	Examples of OLAP	1-30
1.4	OLTP vs	OLAP	1-34
1.5	Data Mining as a step in KDD		
	1.5.1	Definition	1-35
	1.5.2	KDD Process (Knowledge Discovery in Databases)	1-36
	1.5.3	Architecture of a Typical Data Mining System	1-37

1.6	Kind of Pa	itterns to be Mined1	-38
	1.6.1	Data Mining Functionalities	-38
1.7	Technolog	gies Used1-	-40
	1.7.1	Statistics	-40
	1.7.2	Machine Learning	-40
	1.7.3	Information Retrieval (IR)	-41
	1.7.4	Database Systems and Data Warehouses	
	1.7.5	Decision Support System1	
1.8		ng Applications1-	
1.9	Self-learn	ing Topics1	-42
	1.9.1	Data Marts1	-42
	1.9.2	Major Issues in Data Mining1	-43

Chapter 2: Data Exploration and Data Preprocessing

2-1 to 2-53

Syllabus: Types of Attributes, Statistical Description of Data, Measuring Data Similarity and Dissimilarity. Why Preprocessing? Data Cleaning, Data Integration, Data Reduction: Attribute Subset Selection, Histograms, Clustering, Sampling, Data Cube aggregation, Data transformation and Data Discretization: Normalization, Binning, Histogram Analysis. Self-learning Topics Data Visualization, Concept hierarchy generation.

2.1	Types of A	Attributes	2-1
	2.1.1	Attributes Types	2-1
2.2	Statistical	Description of Data	2-3
	2.2.1	Central Tendency	2-4
	2.2.2	Dispersion of Data	2-6
	2.2.3	Graphic Displays of Basic Statistical Descriptions of Data	2-7
2.3	Measurin	g Similarity and Dissimilarity	2-15
	2.3.1	Data Matrix versus Dissimilarity Matrix	2-15
	2.3.2	Proximity Measures for Nominal Attributes	2-16
	2.3.3	Proximity Measures for Binary Attributes	2-16
	2.3.4	Dissimilarity of Numeric Data : Minkowski Distance	
	2.3.5	Proximity Measures for Ordinal Attributes	
	2.3.6	Dissimilarity for Attributes of Mixed Types	2-20
	2.3.7	Cosine Similarity	2-21
2.4	Why Preprocessing ?		
	2.4.1	Why Pre-processing is Required?	2-21
	2.4.2	Different Forms of Data Pre-processing.	2-22
2.5	Data Cleaning		2-22
	2.5.1	Reasons for "Dirty" Data	2-22

	2.5.2	Steps in Data Cleansing	2-23
	2.5.3	Missing Values	2-24
	2.5.4	Noisy Data	2-25
	2.5.4(A)	Binning	2-25
	2.5.4(B)	Outlier analysis by clustering	2-29
	2.5.4(C)	Regression	2-30
	2.5.5	Inconsistent Data	2-31
2.6	Data Inte	gration	2-31
	2.6.1	Introduction to Data Integration	2-31
	2.6.1(A)	Entity Identification Problem	2-32
	2.6.1(B)	Redundancy and Correlation Analysis	2-32
	2.6.1(C)	Tuple Duplication	2-35
	2.6.1(D)	Data Value Conflict Detection and Resolution	2-35
2.7	Data Red	uction	2-36
	2.7.1	Data Cube Aggregation	2-37
	2.7.2	Dimensionality Reduction	2-37
	2.7.2(A)	Attribute subset selection	2-38
	2.7.3	Data Compression	2-39
	2.7.4	Numerosity Reduction	2-40
	2.7.4(A)	Histogram Analysis	2-40
	2.7.4(B)	Clustering	2-41
	2.7.4(C)	Sampling	2-41
2.8	Data tran	sformation and Data Discretization	2-42
	2.8.1	Data Transformation	2-42
	2.8.2	Data Discretization	2-43
	2.8.3	Data Transformation by Normalization	2-43
	2.8.4	Discretization by Binning	2-46
	2.8.5	Discretization by Histogram Analysis	2-47
2.9	Self-learr	ning Topics	2-47
	2.9.1	Data Visualisation	2-47
	2.9.2	Concept Hierarchies	2-52
	2.9.2(A)	Concept hierarchy generation for categorical data	2-52

Chapter 3: Classification

3-1 to 3-78

Syllabus: Basic Concepts; Classification methods: 1. Decision Tree Induction: Attribute Selection Measures, Tree pruning.

2. Bayesian Classification: Naïve Bayes Classifier. Prediction: Structure of regression models; Simple linear regression, Accuracy and Error measures, Precision, Recall, Holdout, Random Sampling, Cross Validation, Bootstrap, Introduction of Ensemble methods, Bagging, Boosting, AdaBoost and Random forest. Self-learning Topics: Multiple linear regression, logistic regression, Random forest, nearest neighbour classifier, SVM

3.7.2

3.7.3	Random forest	3-72
3.7.4	K-Nearest-Neighbor Classifiers	3-73
3.7.5	Support Vector Machine (SVM)	3-75
3.7.5(A)	Tuning Hyperparameters	3-77

Chapter 4: Clustering and Outlier Detection

4-1 to 4-72

Syllabus : Cluster Analysis : Basic Concepts; Partitioning Methods: K-Means, K Medoids ; Hierarchical Methods: Agglomerative, Divisive, BIRCH; Density-Based Methods: DBSCAN. What are outliers? Types, Challenges; Outlier

Detection Methods : Supervised, Semi Supervised, Unsupervised, Proximity based, Clustering Based. Self-learning Topics Hierarchical methods : Chameleon, Density based methods: OPTICS, Grid based methods: STING, CLIQUE.

4.1	Cluster	Analysis	4-1
	4.1.1	What is Clustering ?	4-1
	4.1.2	Categories of Clustering Methods	4-2
	4.1.3	Different Distance Measures that can be used to Compute Distances between Two Clusters	4-3
	4.1.4	Difference between Classification and Clustering	4-4
4.2	Partitio	ning Methods : K-Means, K Medoids	4-5
	4.2.1	K-means Clustering : (Centroid Based Technique)	4-5
	4.2.2	K-Medoids (Representative Object-based Technique)	4-19
	4.2.3	Sampling Based Method	4-24
4.3	Hierarc	hical Methods : Agglomerative, Divisive, BIRCH	4-24
	4.3.1	Agglomerative Hierarchical Clustering	4-26
	4.3.2	Divisive Hierarchical Clustering	4-53
	4.3.3	BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)	4-54
	4.3.4	Advantages and Disadvantages of Hierarchical Clustering	4-57
4.4	Density	r-Based Methods: DBSCAN	4-57
	4.4.1	DBSCAN (Density Based Methods)	4-58
4.5	What is	an Outlier ?	4-60
	4.5.1	Applications	4-60
4.6	Types o	of Outliers	4-61
	4.6.1	Global Outliers	4-61
	4.6.2	Contextual (or Conditional) Outliers	4-62
	4.6.3	Collective Outliers	4-62
4.7	Challen	ges of Outlier Detection	4-63
4.8	Outlier Detection Methods		
	4.8.1	Supervised, Semi - Supervised, Unsupervised Methods	4-63
	4.8.2	Statistical Methods, Proximity-based Methods and Clustering-based Methods	4-64

4.9	Proximity	based Approaches	.4-64
	4.9.1	Distance-based Outlier Detection and a Nested Loop Method	.4-65
	4.9.2	A Grid based Method	.4-65
	4.9.3	Density based Outlier Detection	.4-66
4.10	Clustering	based Approaches	.4-68
4.11	Self-learni	ng Topics	.4-70
	4.11.1	Hierarchical methods : Chameleon	.4-70
	4.11.2	Density based methods : OPTICS	.4-70
	4.11.3	Grid based methods : STING, CLIQUE	.4-72

Chapter 5: Frequent Pattern Mining

5-1 to 5-48

Syllabus : Basic Concepts : Market Basket Analysis, Frequent Itemset, Closed Itemset, and Association Rules, Mining Methods: The Apriori Algorithm: Finding Frequent Itemset Using Candidate Generation, Generating Association Rules from Frequent Itemset, Improving the Efficiency of Apriori, A pattern growth approach for mining Frequent Itemset, Mining Frequent Itemset using vertical data formats; Introduction to Advance Pattern Mining : Mining Multilevel Association Rules and Multidimensional Association Rules.

Self-learning Topics: Association Mining to Correlation Analysis, lift, Introduction to Constraint-Based Association Mining

5.1	Basic Cor	ncept : Market Basket Analysis	5-1
	5.1.1	What is Market Basket Analysis?	5-1
	5.1.2	How is it Used ?	5-1
	5.1.3	Applications of Market Basket Analysis	5-2
5.2	Frequent	Itemsets, Closed Itemsets and Association Rules	5-2
	5.2.1	Frequent Itemsets	5-2
	5.2.2	Closed Itemsets	5-3
	5.2.3	Association Rules	
	5.2.3(A)	Large Itemsets	5-4
5.3	Frequent	Pattern Mining	5-5
5.4	Frequent	Itemset Mining Method	5-5
	5.4.1	Apriori Algorithm for Finding Frequent Itemsets using Candidate Generation	5-5
	5.4.2	Generating Association rules from frequent itemsets	5-7
	5.4.3	Advantages and Disadvantages of Apriori Algorithm	5-7
	5.4.4	Solved Examples on Apriori Algorithm	5-7
	5.4.4	Improving the Efficiency of Apriori	5-28
5.5	A Pattern	n Growth Approach for Mining Frequent Itemsets (FP-Growth)	5-28
	5.5.1	Definition of FP-tree	5-28
	5.5.2	FP-Tree Algorithm	5-29
	5.5.3	FP-Tree Size	5-30

	5.5.4	Example of FP Tree	5-30
	5.5.5	Mining Frequent Patterns from FP Tree	5-34
	5.5.6	Benefits of the FP-Tree Structure	5-39
5.6	Mining Fr	equent Itemsets using Vertical Data Formats	5-39
5.7	Mining Clo	osed and Maximal Patterns	5-40
5.8	Mining Mu	ıltilevel Association Rules	5-41
5.9	Mining Mu	ıltidimensional (MD) Association Rules	5-42
5.10	Associatio	n Mining to Correlation Analysis	5-45
5.11	Pattern Ev	valuation Measures	5-45
5.12	Introducti	on to Constraint based Association Mining	5-47

Chapter 6: Business Intelligence

6-1 to 6-20

Syllabus : What is BI? Business intelligence architectures; Definition of decision support system; Development of a business intelligence system using Data Mining for business Applications like Fraud Detection, Recommendation System

Self-learning Topics : Clickstream Mining, Market Segmentation, Retail industry, Telecommunications industry, Banking & finance CRM, Epidemic prediction, Fake News Detection, Cyberbullying, Sentiment Analysis etc.

6.1	What is	Business Intelligence?	6-1
6.2	Busines	Business Intelligence?s Intelligence Architectures	6-1
	6.2.1	The Three Major Components of BI Architecture	6-2
	6.2.2	Different Components of a Business Intelligent System	6-3
6.3	Definition	on of Decision Support System	6-3
6.4	Develop	oment of a Business Intelligence System	6-5
6.5	Busines	s Intelligence	
	6.5.1	Business Intelligence Issues	6-7
6.6		etection	
6.7	Recommendation System6-1		
6.8	Clickstream Mining		
	6.8.1	Clickstream Data : Collection and Restoration	6-11
	6.8.2	Clickstream Data: Visualisation and Categorisation	
6.9	Market Segmentation		
	6.9.1	Market Segmentation for Market Trend Analysis	6-12
	6.9.2	Sales Trend Analysis	6-13
6.10	Retail Ir	ndustry	6-13
6.11	Telecommunications Industry6-1		
6.12	Banking	g and Finance	6-15